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1. Background: Adversarial Attack

Adversarial example: a modified image input that is 
intentionally perturbed. It is hard to distinguish by 
humans but can fool deep neural networks easily.

Therefore, strengthening neural network models to 
defend adversarial attacks is an important task

Financial, medical or even military applications 
need highly safe and robust models
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1. Background: Adversarial Defense

not effective enough to 
some strong adversaries

……

massive time and computational 
resource consuming

only defend limited types 
of attacks

suffer from counterattacks 



1. Background: Challenge

The first challenge is to explore the intrinsic mechanism of adversarial 
attacks to enhance the defense ability of deep learning methods;

The second challenge is to defense hybrid adversarial attacks that might 
include various types of attacks or even unknown types;

The third challenge is to protect the defender itself from adversarial 
attacks. 



1. Background: Detector Motivation

Adversarial attacks optimize，

In each iteration and for 
each pixel，

gradient information

interpreting method



1. Background: Rectifier Motivation

If we erase those pixels with higher |𝑔!"#(")|, 
the attack success rate drops significantly.

interpreting method the first challenge

detect rectify



2. Our Framework：X-Ensemble
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1. Generate interpreting maps
2. Identify 

3. Classify if clean 

4. Rectify
if adversarial 

5. Classify



2. Details on our Ensemble Detector: X-Det
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2. Details on our Rectifier

pixel



3. Experiment : Setting

Attack method: FGSM[1], PGD[2], Deepfool[3], C&W[4], DDN[5], OnePixel[6]

Interpreting method: VG, GBP[8], IG[9], LRP[10]

Dataset: Fashion-MNIST, CIFAR-10, ImageNet

Baseline: PD[11], TWS[12], MDS[13] for detection,
Adversarial training[7], PD[11], TVM[14] for whole pipeline 



3. Experiment Results: Detection

Tab 2. AUC score of adversarial example detection for vaccinated training 

Our RF ensemble detector

Components of our ensemble detector

*Table index follows the paper order



3. Experiment Results: Detection

Tab 3. AUC score of adversarial example detection for unvaccinated training 

Our ensemble detector

*OnePixel is L0 attack, while our detectors are trained for L2 and L∞



3. Experiment Results: Whole Pipeline

Tab 5. Image classification accuracy of X-Ensemble and the baselines



3. Experiment Results: Robustness

Tab 6. Classification accuracy of X-Ensemble under white- box attacks 



4. Conclusion

1) We proposed X-Ensemble, an ensembled detection-rectification pipeline on 
high-performance adversary defense;

2) X-Ensemble combines sub-detectors with random forests to achieve 
satisfying performance against hybrid and unforeseen attacks;

3) The non-differentiable nature of random forests guarantees the robustness 
of X-Ensemble under white-box attacks.
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