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ABSTRACT

Reward shaping has been applied widely to accelerate Reinforce-
ment Learning (RL) agents’ training. However, a principled way of
designing effective reward shaping functions, especially for com-
plex continuous control problems, remains largely under-explained.
In this work, we propose to automatically learn a reward shaping
function for continuous control problems from offline datasets, po-
tentially contaminated by unobserved confounding. Specifically,
our method builds upon the recently proposed causal Bellman equa-
tion to learn a tight upper bound on the optimal state values, which
is then used as the potentials in the Potential-Based Reward Shap-
ing (PBRS) framework. Our proposed reward shaping algorithm
is tested with Soft-Actor-Critic (SAC) on multiple commonly used
continuous control benchmarks and exhibits strong performance
guarantees under unobserved confounders. More broadly, our work
marks a solid first step towards confounding robust continuous
control from a causal perspective.
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1 INTRODUCTION

Reinforcement learning (RL) has demonstrated impressive success
in continuous control domains such as robotic manipulation, loco-
motion, and autonomous systems [24, 39, 40]. Despite this progress,
learning effective policies in high-dimensional, complex environ-
ments remains challenging due to sample inefficiency and high
sensitivity to reward design. When the original task reward is not
efficient to learn from, reward shaping can significantly accelerate
learning by injecting informative signals that guide exploration
and policy improvement. However, designing effective shaping
functions remains a persistent challenge, often requiring substan-
tial domain expertise and manual effort to ensure they are helpful
without hurting the performance [9, 30, 32, 37].

Potential-Based Reward Shaping (PBRS) [30] offers a principled
framework for injecting additional reward signals while preserving
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the original task’s optimal policy. However, the effectiveness of
PBRS critically depends on the quality of the potential function
used. Recent work has explored learning state potentials automat-
ically from offline data [3, 21, 55], but such approaches typically
assume no unobserved confounders (NUC) [27, 28], the access to
fully observed (unconfounded) trajectories. Such an assumption can
easily break down in many real-world settings. Unobserved con-
founders can arise from human demonstrations, legacy systems, or
sensor capability differences in robotic platforms. When the NUC
assumption is violated, the effects of candidate policies become
generally unidentifiable. That is, the given model assumptions are
insufficient to uniquely recover the value function from offline data,
regardless of the sample size [33, 51]. As a result, standard RL meth-
ods relying implicitly on NUC can suffer from degraded learning
performance in such settings. More recently, Li et al. [18] propose
to use partial identification approach to learn confounding robust
shaping functions. But their proposed method is limited to discrete
and lower dimensional settings. A practical solution for continuous
and higher dimensional environments is yet to be discussed.

In this work, we tackle the problem of automatic reward shap-
ing in continuous control settings where offline data may be con-
founded. Specifically, we utilize offline trajectories collected from
unknown, potentially biased behavioral policies to estimate causal
upper bounds on the optimal interventional state values. These
bounds are then employed as potential functions within the PBRS
framework to construct shaping rewards. By incorporating these
shaped rewards, we enable model-free RL agents to perform more
informed exploration and policy learning, even in the presence of
unobserved confounders. We empirically evaluate our framework
in confounded MuJoCo environments with partial observability. Ex-
periments on a suite of confounded continuous environments show
that our method consistently outperforms unshaped and causally
unaware shaping baselines (CQL-Shaping, [14]). These results high-
light the robustness and practical effectiveness of our approach in
real-world confounded RL settings.

Our main contributions are as follows:

+ We derive a Causal Bellman Equation for the stationary infinite-
horizon Confounded Markov Decision Process (CMDP), which
converges to a tight upper bound of the optimal state values;

» We design a neural learning algorithm that approximates the
Causal Bellman Equation in high-dimensional continuous
state-action CMDPs;

« We use the learned state value bound as the reward shaping
function and empirically demonstrate the superior perfor-
mance boost when applying to Soft-Actor-Critic [5] in various
challenging confounded continuous control environments.



2 BACKGROUND

Confounding Robust Decision-making. We will focus on the se-
quential decision-making setting in an infinite horizon stationary
Markov Decision Process (MDP, Puterman [35]) where the agent
intervenes on a sequence of actions Xj, ... to optimize the cumu-
lative return over reward signals Y;, ... given state observations
S1, 82, ... at each corresponding time step. Standard MDP formal-
ism focuses on the perspective of the learners who could actively
intervene in the environment. Consequently, the data collected
from randomized experiments is free from the contamination of
unobserved confounding bias and is generally assumed away in the
model. However, when considering offline data collected by pas-
sive observation [14, 16, 20] where the learner may not necessarily
have deliberate control over the behavioral policy generating the
data, or when the state attributes are partially observed [10, 12, 45],
unobserved confounding arises. Consequently, this could lead to
biased estimation and safety/alignment issue in various reinforce-
ment learning tasks, including off-policy learning [13, 18-20, 53],
curriculum learning [17] and imitation learning [15, 54].

Continuous Control with Deep Reinforcement Learning. In con-
tinuous action space, the sample efficiency problem is exacerbated
rendering commonly used on-policy learning solutions unfavor-
able, such as TRPO [38], PPO [40] or A3C [23]. At each time step,
on-policy algorithms collect new trajectories from the environment
only for updating the agents by a single gradient step. As task
complexity grows, this procedure becomes increasingly expensive.
Off-policy algorithms, on the other hand, reuse past experiences.
The direct application of this idea is DQN and its variants [24]. For
continuous policy learning, actor-critic based method is preferred
for its stability and easy-to-tune hyper-parameters [5, 39]. In this
work, we use Soft-Actor-Critic (SAC), a maximum entropy rein-
forcement learning framework which improves upon the traditional
maximum reward framework with substantially better exploration
and robustness [4, 56], as our base learning algorithm.

Potential-based reward shaping (PBRS). Reward shaping is a pop-
ular line of techniques for incorporating domain knowledge during
policy learning. Common approaches such as Potential-Based Re-
ward Shaping (PBRS, Ng et al. [30]) add supplemental signals to the
reward function so that it would be easier to learn in future down-
stream tasks without affecting the optimality of the learned policy.
PBRS modifies the reward function in the system by adding the
discounted next state potential subtracted by current state poten-
tial. This encourages the learning agent to visit states with higher
potentials while avoiding visiting states with low potentials. More
importantly, optimal policies remain invariant across this shaping
process, i.e., every optimal policy learned in the MDP under PBRS
is guaranteed to be optimal in the original MDP, and vice versa.

Notations. We will consistently use capital letters (V) to denote
random variables, lowercase letters (v) for their values, and cursive
V to denote their domains. Fix indices i, j € N. We use bold capital
letters (V) to denote a set of random variables and let |V| denote its
cardinality of the set V. Finally, 12—, is an indicator function that
returns 1 if event Z = z holds true; otherwise, it returns 0.

3 THE CHALLENGE OF CONFOUNDED
CONTINUOUS CONTROL

In real-world continuous control tasks, agents may have limited
sensor information due to cost or environment constraints when
deployed in online operation. This leads to poor sample efficiency
if the agent is to be tuned fully online. Pre-training with offline
data is a common remedy. But people generally expect the behav-
ioral policy generating the offline datasets to have the same sensor
capability as the online agent [14, 16, 29]. However, offline data
might be collected by agents in a more controlled environment with
privileged sensor capability [6, 7, 25]. This mismatch induces unob-
served confounding at the decision level: offline decisions reflect
privileged information unavailable to the online learning agent. As
a result, directly learning from such data without addressing con-
founding can lead to biased policies and poor online performance.
Tackling confounded continuous control is thus critical for reliable
and sample-efficient RL under realistic sensory constraints.

In this paper, we consider an extended family of MDPs that
explicitly models the presence of unobserved confounders when
generating offline data.

Definition 3.1. A Confounded Markov Decision Process (CMDP)
M is a tuple of (S, X, Y, U,F,P) where,
« 8, X, Y are, respectively, the space of observed states, actions,
and rewards;
« U is the space of unobserved exogenous noise;
« Fis a set consisting of the transition function 7 : SXX XU —
S, behavioral policy f : S X U — X, and reward function
r:SXXXxU—Y;
« Pis a set of distributions P over the unobserved domain U.

To model general continuous control problems, we assume the
space of states, S, actions, X, and unobserved exogenous noise,
U, to be multi-dimensional and continuous throughout the paper.
Consider a demonstrator agent interacting with a CMDP. For every
time step h = 1, ..., the nature draws an exogenous noise Uy from
the distribution P(U); the demonstrator performs an action Xj «—
fx (Sn, Up), receives a subsequent reward Yy, « fy(Sp, Xp, Up), and
moves to the next state Sp+1 < f5(Sh, Xn, Up). The observed trajec-
tories of the demonstrator (from the learner’s perspective) are thus
summarized as the observational distribution P(X,S,Y). ! In the
data-generating process described above, for every time step h, the
exogenous noise Uy, becomes an unobserved confounder affecting
the action Xj, reward Y, and next state Sp4; simultaneously. There-
fore, CMDP is also referred to MDP with Unobserved Confounders
(MDPULC, [52]) and is a subclass of Confounded Partially Observed
MDP [2, 22, 41] where Markov property holds.

The observed distribution of such an offline collected dataset
with finite trajectories up to H steps can be written as,

H
P(X1.m, St Yim) = P(s1) 1—[ (/ Lsp1=fs (snoxi)
et 2 ()

L, =fc (spotin) Lyn=1v (spxpoin) P(uh)duh)

1'We will consistently use X, S, Y to represent trajectory sequences.



(a) CMDP - Offline Data Collection, M

(b) CMDP - Online Learning, M,

Figure 1: (a) Causal diagram of the CMDP modeling the offline data generating process; (b) Causal diagram of the CMDP

modeling the online learning process under policy do(x).

The causal diagram in Fig. 1a showcases how the confounders are
affecting state transitions, reward, and the behavioral agent’s policy
while the online learning agent doesn’t have such information
when acting in the environment Fig. 1b. By convention [33], we
use bi-directed arrows (e.g., X, <> Sp) to indicate the presence of
unobserved confounders, Uy, affecting actions, states and rewards.

During the online learning phase, as shown in the causal diagram
in Fig. 1b, the agent intervenes on the action variable following
a policy m(xp|sp) that maps from state to a distribution over the
action domain X. This is denoted as policy intervention do(r)
replacing the behavioral policy fx during the offline data collection
phase. The online trajectory distribution in CMDP under 7, M is,

Pﬂ(Xl:H: Sl:Ha Yl:H) =
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where the transition distribution 7~ and the reward distribution R
are given by,

T(Sh, Xhs sh+l) = '/(u 1sh+1=f5(sh,x;1,uh)P(uh)duh (3)

R (51 X 1) = /ﬂ Loy (opnan Py ()

In CMDP, the learning goal is still to find the optimal policy 7* that

maximizes the cumulative return (often discounted by y € (0, 1)).

That is, 7* = argmax, E[ Y, y"~'yx]. This objective function can
be solved iteratively using the Bellman Optimality Equation [35],

Q"(s,) = E[Yh + ymax Q" (S, XISk = 8, Xn =x] (5

where Q*(s,x) = E[X52, ¥ 'Yn+t|Sh = s, Xp = x] by definition is
the optimal state action value function denoting the best return
after taking action x in state s.

In the offline to online learning setting, one would envision that
learning from offline datasets generated by a competitive policy
with a good action space coverage should yield near-optimal online
policies [14, 29]. This is indeed true under the MDP definition
where there are no unobserved confounders. The state transitions
and reward functions can be easily identified by the observation
distribution of the offline dataset,

T (Shs Xns Sha1) = P(Sha1lsh, xn) (6)
R (S Xns Yn) = P(Ynlsn, xn)- (7)

When the above identification formula hold, several off-policy al-
gorithms have been proposed to estimate the effect of candidate
policies from finite observations [11, 14, 26, 29, 34, 44, 48, 49]. To-
gether with deep learning, these methods could be further extended
to complex domains [24, 31, 39, 40, 42]. However, NUC could be
fragile in practice and does not necessarily hold due to violations
like sensory mismatch in data generation process. In these situa-
tions, applying standard off-policy methods may fail to converge
to optimal, despite using powerful deep learning models. ?

To witness the challenge of confounded continuous control, we
instantiate a confounded variant of Hopper [47] where the offline
agent has access to the full state observation, a total of 11-dimension
vectors while the online agent can observe all of the dimension
except the angle of it thigh joint (comparable to the knee in humans).
Not observing the position of its thigh joint presents a genuine
challenge to the agent given it would be unable to know to how
move its thigh joint to generate the power to hop. As shown in
Fig. 2 the vanilla SAC [5] agent trained under partial observation
cannot recover 1/2 of the performance of the agent trained with
complete state observations.

Hopper Return per Eval Step

—— SAC agent ex state 2 obs

500 /_/—
7 SAC agent + CQL PBRS ex state 2 obs

0 == SAC w/ full observation capacity baseline
0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

Figure 2: Performance of Hopper SAC Agent with full capac-
ity and SAC agent unable to observe state 2.

These results expose a critical barrier to reliable learning under
restricted sensory capabilities: without access to key hidden factors,
even state-of-the-art off-policy RL methods will suffer. And adding
2NUC is orthogonal to the issue of action space coverage discussed by the line of

research on conservative Q-learning (CQL) [14]. As shown in Fig. 2, CQL learned state
values cannot handle the unobserved confounding issue in offline datasets.



good quality offline datasets which supposedly contain valuable
information on the optimal state values does not help. As demon-
strated in Fig. 2, commonly used algorithms also fall short under the
confounded setting due to their fundamental limitation of assuming
NUC implicitly followed from the (PO)MDP definition. Then, our
central research question is: Can we extract and transfer such con-
taminated offline knowledge to guide online learning? The answer
is yes. In the next section, we propose the causal bellman equation
from which automatic reward shaping with confounded offline data
is made possible to facilitate online learning.

4 CONFOUNDED CONTINUOUS CONTROL
WITH SHAPED REWARDS

In this section, we will introduce how we learn an optimistic state
potential from confounded continuous offline data, which is then
used for online fine-tuning. See Sec. 7 in the appendix for proof
details of theorems discussed in this section.

4.1 Learn Optimistic State Potentials via
Confounding Robust Offline Pretraining

It is well acknowledged that a good state potential function is the
optimal state value [30]. But without training the agent, one cannot
have easy access to the optimal state values. The premise of using
state values estimated from offline dataset as state potentials is that
such values are close to optimal state values. However, without
deliberate control on the quality of the behavioral policy nor the
NUC condition, such offline learned values could be heavily biased
and cannot be used for reward shaping as we have seen in Fig. 2.
Recently Li et al. [18] proposes to use partial identification methods
to upper bound the optimal state values for finite horizon non-
stationary CMDPs from such confounded offline datasets robustly.
Here we extend the results to stationary infinite-horizon CMDPs.

Theorem 4.1 (Causal Bellman Optimal Equation for Stationary
Infinite-Horizon CMDPs). For a CMDP environment M with reward
Y, < b,b € R, the optimal value of interventional policies, V*(s), Vs €
S, is upper bounded by V*(s) < V(s) satisfying the Causal Bellman
Optimality Equation,

V(s) = max [P(x|s) (ﬁ (s, %) + yE;[V(s')])
(®)
+ P(—x|s) (b + ymz}x\_/(s’))}

whereR is offline estimated reward distribution and T is the estimated
transition distribution.

Compared with the original Bellman Optimal Equation, the
Causal Bellman Equation accounts for the uncertainty brought
by confounders in the offline dataset via an extra term,

(b+ y max Ve (s')) ©)

which represents the best return that the agent could have achieved
from those “unselected" actions, i.e., P(—x|s). With the Causal Bell-
man Optimal Equation, we can robustly upper bound the optimal
state values from a confounded offline dataset generated by CMDP

M. Next we show that the extended Causal Bellman Optimal Equa-
tion converges to a unique fixed point, which is a valid upper bound
on the optimal interventional state values for online agents (Fig. 1b).

Theorem 4.2 (Convergence of Causal Bellman Optimal Equation).
The Causal Bellman Optimality Equation converges to a unique fixed
point, which is also an upper bound on the optimal interventional state
values under the assumption that P(s, x) > 0,Vs, x in the stationary
infinite horizon CMDP M.

The proposed Causal Bellman Equation does not translate di-
rectly into a practical algorithm for high dimensional continuous
control problems with function approximators, though. The propen-
sity score of actions P(x|s), P(—x|s) is ill-defined as any single
point in a continuous distribution has zero probability. Further-
more, naively enumerating all the states to calculate maxy V(s”) or
enumerating actions to get values from Q-values is intractable in
continuous state and action space. Thus, we make several practical
approximations when implementing the Causal Bellman Equation.

Firstly, we parametrize the causal upper bound state potential to
be Vp, (-) and its corresponding target network Vo () for smoother
learning updates [24]. We also replace the outside max, in Eq. (8)
with an expectation over the observed action distribution in the
offline dataset under the condition that the behavioral policy is
competitive. Then, we restrict the observed policy distribution to
be within a tractable class of Gaussian policies as Py,. To train this
policy distribution, we maximize the likelihood of the observed
actions given states in the offline dataset D,

J(02) = 2| log Py, (x1s)] (10)

When training Vp,, we apply the reparametrization trick to make
sampling from Py, differentiable,

x = fp, (&) (11)

where € is an input noise vector sampled from a fixed standard
Gaussian distribution. Lastly, instead of calculating the global best
possible next state maxy V (s’), we aim at finding the best possible
nearby states if an action x” # x had been taken. Thus, we choose
to model the difference distribution between the current state s and
next state s’ given state action pair (s, x). Similarly, we restrict this
distribution to be Gaussian, Pp,, and the training objective is to
maximize the log likelihood of observed state differences in D,

7(65) =Eqp [long3 (As | s,x)] (12)

where A is the state difference between s and s”. And we apply the
reparametrization trick again for differentiable sampling,

A = fp,(e,5,x). (13)

Now we can approximate the Causal Bellman Equation backup,
B, with parametrized neural network components as,

B74,(5) = B 2,019 (s + 170, )
(14)
+ Py, (x'|s) ( maxy + yVel (s + As))]

yeD
where x’ = arg MaXyr Py, (-[s).x" #x Vo, (s + AY), Ay ~ Pg, (-5, x7) is

the action that maximize the return of “the road not taken", and
Ag ~ Pg, (s, x") is the state difference sampled given s, x”. The extra



Algorithm 1 Neural Causal Upper Bound State Potential

1: Initialize parameters 01, 0], 02, 05

2: while Not Converged do

3: Sample an offline batch {(s;, x;, s;, yi)}?zl

4: Update observed policy, 8, < 6, + 12@](92) (Eq. (10))
5 Update state difference, 03 < 65 + A3V J(65) (Eq. (12))
6: end while

7: 'while Not Converged do

8: Sample an offline batch {(s;, x;, s}, y,»)}?:1

9: Update state potential, 6; «— 0; — A;VJ(6;) (Eq. (15))
10: Update target networks, 8] « 76; + (1 - 1)6;

: end while
: return Vp, (s)

e
[

compensation term in Eq. (9) is approximated by the maximum
reward observed in the offline dataset plus the discounted best next
state value as if the agent had taken x” and transited to a state s’
that is Ay away from s. In implementation, we also approximate the
action propensity score with its corresponding Gaussian density to
avoid the zero probability issue. The state potential function Vg, is
then trained to minimize the squared residual error,

1/ . 2
7(01) =ED[5(V91 (5) - BV, (5)) ] (15)

See Algo. 1 for the full pseudo-code of learning the state poten-
tials from continuous confounded offline data. In the next section,
we will illustrate how to use this learned state potentials as reward
shaping functions during online training with SAC.

4.2 Online Fine-tuning with Reward Shaping

We first re-establish the optimal policy invariance property of
PBRS [30] in infinite-horizon stationary CMDPs.

Proposition 4.3. For a CMDP under policy w, M, let M}, be the
CMDP obtained from M, by replacing the reward with the following
function, for every time steph =1,...,H,

Yy, = yn + YPr(She1) — Pn(Sh), (16)

where yy, is the original reward returned by My; ¢n(-) : S+— Risa
real valued potential function. Then every optimal policy in M, will
also be an optimal policy in M, and vice versa.

This guarantees that the agent could still obtain the same optimal
policy as the agent without using reward shaping.

For the learning algorithm, we choose to use a popular value-
based maximum entropy learner, SAC [5], for its amenity to PBRS.
Because for policy gradient based methods like PPO [40], multi-
step returns are commonly adopted when calculating advantages
[39] resulting in the intermediate shaping terms being canceled out
without affecting learning process.

The original SAC algorithm learns a soft policy that minimizes
the following objective function:

m@mm” -

R L e

where the parametrized policy 74 is updated towards the exponen-
tial of the learned Q function Qg and Zy(s) normalizes the distribu-
tion. With the reward shaping function defined in Eq. (16), the Q
value function Qy is now trained to track returns with the shaped
reward y’ instead of y while other parts of SAC stay unchanged.

5 EXPERIMENTS

In this section, we evaluate the efficacy of the state value up-
per bounds learned in Algo. 1 by applying them as potentials
in Potential-Based Reward Shaping (PBRS, [30]) to augment SAC
agents’ training rewards in a suite of confounded, continuous con-
trol environments. We compare our results to 1) a baseline online
SAC agent that does not use PBRS and 2) CQL PBRS [14] that
uses offline learned conservative Q-values as shaping potentials in
PBRS. We provide further commentary on which cases the causal
reward shaping function can provide the most improvement to
online training, and how offline data quality affects performance.

5.1 Experiment Design

Environments and Offline data: We selected six continuous con-
trol tasks from the Gymnasium [47] to evaluate our causal PBRS
method. We selected four MuJoCo [46] tasks on robotic locomo-
tion including 1) Hopper - control a single legged agent to hop in
2D space without falling, 2) HalfCheetah - control a two legged,
Cheetah-like, agent to run forward in 2D space as fast as possible,
3) Walker2D - control a bipedal agent to walk forward in 2D space
without falling over, and 4) Ant - control a quadruped robot to walk
forward in 3D space. We also selected two tasks from Adroit [36]
on controling a robotic hand to open a door (Door) and to move
a ball to the target location (Relocate). We use the offline datasets
from Minari [50]. For details, see Sec. 8 in the appendix.

Confounded Environment Setup: To simulate unobserved
confounders in our experiments, we remove dimensions from the
environment’s observation space. As a result, we simulate trajecto-
ries generated by an agent with access to richer sensory information
(those removed dimensions), which is not accessible to the online
agent. Consequently, typical off-policy learners cannot identify the
behavioral policy or the state / g-value function accurately, given
the unobserved confounders in the offline datasets [33, 51]. In prac-
tice, removing some of the dimensions will render the task much
more challenging than removing others. For example, removing the
agent’s velocity observation in the MuJoCo environments - which
is a key input into the environment’s reward function - would make
it difficult to derive the useful state value function from the offline
data. On the other hand, removing an observation dimension that
is independent of the state / Q-value function would not affect
standard off-policy learners significantly. Therefore, to understand
which dimensions to remove to create meaningful unobserved con-
founders, we use the Randomized Conditional Independence Test
(RCIT, [43]) to measure the independence degree between an ob-
servation dimension and the episode’s reward-to-go, conditioned
on the remaining observations and actions. For detailed analysis
on the relations between the removal of an observation dimension
and the online agent’s performance, see Sec. 5.3.

Offline and Online Training: Once we remove selected state
dimensions from the offline dataset, we train our state value upper
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Figure 3: Normalized IQM returns w.r.t State Removed Baseline SAC agent in confounded continuous control benchmarks.

bounds following Algo. 1. We train the environment models for
50 epochs each, and then train the state value upper bounds for
200 epochs each. To prevent over-estimation (in particular from
the "road not taken" estimate ngl (s + Ay)), we clip state value
functions using %?Dy the theoretical max value for the state
value function given the maximum observed reward in the offline
data. As a comparison to our causal shaping functions, we also train
Q-value functions using the CQL algorithm [14].

After training the offline state value functions, we test three
online learners: 1) a baseline SAC where we remove the selected
state dimension from the observation space (State Removed), 2) a
PBRS-based approach where we use the learned Q-value function
from CQL (CQL PBRS), and 3) a PBRS-based approach where the
potentials are the learned state value upper bounds (Causal PBRS,
ours). For the Causal and CQL PBRS method, we apply a scaled
version of the shaping rewards detailed in Prop. 4.3. Specifically,
We Use Yenp + f(yP(s’) — #(s)) as the shaping reward, where yen,
is the observed environment reward, f is a scaling factor, ¢ is the
potential function, and s is the current state and s’ is the next state.
Empirically, we find the agent benefits the most from the potentials
when f < 1 in those environments tested.

5.2 Causal Reward Shaping Performance

Fig. 3 shows the interquartile mean (IQM) returns normalized by
the state removed baseline SAC best evaluation score in each envi-
ronment. Table 1 provides the returns (including the best average
return reached by the agent and the return at the final evaluation
step), normalized mean, median, and inter-quartile mean return
relative to the vanilla SAC baseline under partial state observation.

Overall, the Causal PBRS method outperforms the causally un-
aware baselines (CQL Shaping) consistently and exceeds the per-
formance of the baseline method in 12 / 18 tests, for an average
normalized mean score of 1.32 and normalized IQM of 1.10. In partic-
ular, the Causal PBRS method performs the best in cases where the

removal of a certain state dimension leads to a larger decrease in the
online baseline performance. For example, the Causal PBRS method
outperforms the remove SAC baseline in the Hopper environment
ex. State 1 and 2, where the online baseline does not surpass a score
of 2000, versus Hopper ex. State 5, where the online baseline per-
formance of around 3300 is comparable to the performance of the
Hopper with full observational capabilities [5]. However, we note
there is a limit, given that when removing states 1-4 in the Hopper
environment (which are the dimensions related to joint positions),
both the Causal PBRS and baselines are unable to learn a meaning-
ful policy. Unsurprisingly, the causally unaware CQL PBRS method
largely underperforms the online baseline (normalized mean of
0.86 at best eval), given that the unobserved confounding in the
offline reward signal leads to highly biased Q-value estimations. In
each of the following sections, we provide an overview of the obser-
vation dimensions removed in each environment and the agent’s
performance in those environments.

5.2.1 Hopper. We removed the following dimensions:

« State Dim 1: The Hopper’s torso angle. One of the termination
conditions in Hopper is if the torso angle is bounded between
[-0.2,0.2]. Without this dimension, the agent is unable to
know how to adjust its torso angle to maintain healthy body
positions. The Causal PBRS can improve on the baseline by
around 20%, whereas CQL PBRS underperforms by 15%.
State Dim 2: Angle of the thigh joint. Removing this dimension
has a large impact on the Hopper’s performance, reducing its
baseline return by 50% vs the Hopper’s performance with full
obs capacity using SAC. The Causal PBRS method can drive a
large improvement of almost 100% vs the baseline.

State Dim 3: Angle of the leg joint. The leg joint is comparable
to the knee, so without it, the Hopper has difficulties learning
how to use its lower joints to propel itself forward. Interest-
ingly, even with this dimension removed, the Hopper is able
to get high returns, though it takes almost 900,000 steps. The



Table 1: Average evaluation returns of agents on the 18 confounded environments. All results are averaged over 5 seeds (except
Door and Relocate, they are over 1 seed). "Best Eval" is the agent’s best performance over all smoothed eval steps, and "Final Eval"
is the performance at the end of training (1M steps for MuJoCo, 3M for Adroit). Bold Numbers indicate best best-performing
methods. Our Causal PBRS method significantly outperforms the baselines.

Environment State Dim | Full State Best Eval Final Eval
Removed SAC State Removed Baseline CQL PBRS Causal PBRS (ours) | State Removed Baseline CQL PBRS Causal PBRS (ours)

Hopper-v5 1 3500 2073.1 1777.5 2251.8 2005.1 1592.2 2199.1
Hopper-v5 2 3500 1450.5 1095.9 2761.7 1450.5 1018.5 2729.2
Hopper-v5 3 3500 3283.0 1478.0 3581.6 3280.7 1321.5 3581.6
Hopper-v5 5 3500 33214 1038.4 3183.5 3297.9 1035.0 3055.0
Hopper-v5 7 3500 2935.4 1245.5 3011.0 2884.5 1239.1 2793.0
Hopper-v5 5,6 3500 655.5 1143.2 1036.5 645.4 1060.3 902.5
Hopper-v5 1,2,3,4 3500 304.0 556.8 304.6 265.2 527.8 301.5
Hopper-v5 7,8,9,10 3500 371.7 421.9 1442.4 366.7 408.8 1228.2
Halfcheetah-v5 1 12400 2013.2 2038.8 2054.7 2013.2 2038.8 2051.2
Halfcheetah-v5 3 12400 8930.5 9747.7 8954.4 8930.5 9747.7 8948.9
Halfcheetah-v5 8 12400 896.3 372.8 1103.3 895.1 372.8 1103.3
Walker2D-v5 6 4050 3980.9 3242.6 3899.2 3893.1 3132.4 3883.9
Walker2D-v5 8 4050 3640.4 3765.7 4295.0 3580.1 3708.1 3632.3
Walker2D-v5 10 4050 3925.4 3600.3 3950.3 3925.4 3424.4 3813.6
Ant-v5 13 4000 3084.3 2791.8 3388.9 3081.6 2781.0 3093.1
Ant-v5 16 4000 3749.9 3190.4 2962.9 3473.8 3169.2 2818.3
AdroitHandDoor-v1 1 N/A 2517.6 1119.5 3124.0 44.0 749.4 2247.1
AdroitHandRelocate-v1 36 N/A 25.8 11.7 43.9 10.5 11.7 16.2
Normalized Mean (T) 1.00 0.86 1.32 1.00 1.81 4.03
Normalized Median (1) 1.00 0.85 1.09 1.00 0.91 1.06
Normalized IQM (1) 1.00 0.81 1.10 1.00 0.92 1.10

Causal PBRS method is able to recover full state observation
SAC’s performance, and does so in only around 500,000 steps.
State Dim 5: The Hopper’s forward velocity. The Hopper’s
reward function is heavily dependent on its forward velocity.
Therefore, not observing the forward velocity might decrease
the critic’s ability to estimate the Q-value function. Surpris-
ingly, without this state dimension, the baseline agent can
reach a return comparable to a Hopper agent with full observa-
tion capabilities. We note that the Causal PBRS agent reaches
its highest return after only 400,000 time steps, whereas the
baseline agent requires almost 900,000 steps. This highlights
the Causal PBRS’s ability to accelerate training.

State Dim 7: The angular acceleration of the Hopper’s torso.
The Causal PBRS’s average return is slightly higher than the
baseline agent; however, we note the Causal PBRS reaches
its performance peak at around 300,000 steps, whereas the
baseline agent reaches its peak at 900,000 steps.

State Dim 1,2,3,4: All of the angular positions of the Hopper’s
joints and Torso. Without knowing the position of its joints,
the Hopper agent is unable to learn a meaningful policy. The
Causal PBRS method is similarly unable to learn a meaning-
ful policy, suggesting a limit to the Causal PBRS’s ability to
improve performance in highly confounded environments.
Interestingly, the CQL method can generate a slightly better
policy, although we note the overall still low return.

State Dim 5,6: The forward and vertical velocity of the hopper.
The Causal PBRS agent can learn a better policy than the
baseline, achieving almost double the baseline’s return. The
CQL method can learn a slightly better policy.

State Dim 7,8,9,10: The angular acceleration of the hopper’s
torso and joints. Interestingly, the baseline Hopper’s perfor-
mance is comparable to its performance when removing di-
mensions 1,2,3,4, however, the Causal PBRS agent can learn a
more meaningful policy (return between 1200-1400).

5.2.2 HalfCheetah. We removed the following dimensions:

« State Dim 1: Angle of the front tip. Without the angle of the
front tip (used to know the orientation of the Cheetah), the
Half Cheetah agent’s return drastically decreases from 12,000
to around 2,000. The baseline, the Causal PBRS methods, and
the CQL PBRS methods all perform comparably.

State Dim 3: Angle of the back shin. The back shin in the
middle joint on the HalfCheetah’s back leg. Removing this
dimension from the observation dimension decreases perfor-
mance slightly (10%). Similar to removing state dimension 1,
the Causal PBRS method performs similarly to the baseline;
however, the CQL PBRS method can learn the best policy.
State Dim 8: Velocity of the x-coordinate of the front tip.
Unlike the Hopper, removing the forward velocity greatly
reduces the HalfCheetah’s return. The Causal PBRS method
achieves a higher return vs the baseline policy.

.

5.2.3  Walker2D. We removed the following dimensions:

« State Dim 6: Angle of the left leg joint. Removing the left leg
joint has a limited effect on the Walker2d. Both the Causal
PBRS and Baseline methods perform comparably, but the CQL
method underperforms both by almost 20%.

« State Dim 8: Velocity of the x-coordinate of the torso. Remov-
ing the forward velocity dimension of the Walker2d slightly
decreases performance. The Causal PBRS method achieves a
20% improvement over the baseline method.



« State Dim 10: Angular velocity of the angle of the torso. Re-
moving the left leg joint observation dimensions has a limited
effect on the Walker-2d. The Causal PBRS, Online Baseline,
and CQL PBRS perform comparably.

RCIT Test Statistic vs Causal PBRS - State Removed Gap
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Figure 4: RCIT test statistic v.s. Causal PBRS improvements.

5.24 Ant. We removed the following dimensions:

« State Dim 13: Velocity of the x-coordinate of the torso. Similar
to other environments, the Causal PBRS method helps the
Ant recover some of the performance loss from the loss of its
forward velocity observation, unlike the CQL PBRS method.

« State Dim 16: x-coordinate angular velocity of the torso. The
Causal PBRS underperforms the baseline; however, the base-
line performs much better than the baseline when removing
dimension 13, suggesting less confounding bias in this set-
ting and hence a potential reason for the poor performance.
The CQL PBRS method slightly outperforms the Causal PBRS
method, but still underperforms the baseline.

5.2.5 Adroit Door. We removed the following dimensions:
« State Dim 1: Angular position of the horizontal arm joint. The
baseline agent and Causal PBRS agent perform comparably.
The Causal PBRS method outperforms the baseline by 24%,
while the CQL PBRS method lags behind.

5.2.6 Adroit Relocate. We removed the following dimensions:

« State Dim 36: x positional difference from the ball to the target.
While the agent is still able to infer this position through other
observations (namely dimensions 30 and 33), the overall per-
formance is still low. The Causal PBRS method outperforms
both the baseline and Causal PBRS method.

5.3 Relation Between State Return
Independence and Performance Gap

To understand when the Causal PBRS method can out perform the
online baseline without shaping, we plot the test statistic of the
RCIT test statistic from the conditional independence of the selected
state dimension and the remaining returns-to-go (conditioned on
the remaining states and actions) from the Hopper-v5 Environment,
and the average gap between the Causal PBRS method and the On-
line State Removed Baseline (Fig. 4). A higher test statistic implies
that the observation dimension has a higher dependence on the

returns-to-go, conditioned on the remaining observation dimen-
sions and actions. In Fig. 4, as the test statistic increases, the gap
between the Causal PBRS method and the Online Baseline increases,
thus supporting our theory that the Causal PBRS method performs
better when there is an increase in confounding bias. We also notice
that when we remove dimensions necessary for the task (those with
the highest test statistic), the learned causal shaping function may
not be informative enough to help recover the performance. See
Sec. 10 for a more detailed analysis.

5.4 Impact of Offline Data Quality on Online
Training with Causal PBRS

For our experiments, we used the Minari offline datasets including
three levels of expertise. These three levels of expertise are de-
noted as "simple", "medium", and "expert". The results in Table 1 are
based on training the optimistic state value functions with all three
datasets. To evaluate how the expertise of the agent generating
the offline data affects the Causal PBRS method, we trained three
different causal reward shaping function, each on one of the Minari
datasets. Fig. 5 shows the results. The Causal PBRS trained solely
on the expert data performed the best. However, the Causal PBRS
trained with the medium and simple datasets is still able to improve
the agent’s policy over the baseline. Notably, the performance of
the combined datasets (Combined) is comparable to the Expert
performance, albeit slightly slower to converge, suggesting Algo. 1
can converge well in practice, despite the differing data quality.

Hopper Return per Eval Step

Medium
— Expert
—— Combined
Simple
—— Baseline

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

Figure 5: Causal PBRS performance by offline data quality.

6 CONCLUSION

We introduce a causal framework for automatic reward shaping in
high-dimensional continuous control with unobserved confounders.
By extending the Causal Bellman Equation to continuous settings,
our method learns optimistic state potentials that serve as prin-
cipled shaping functions within the PBRS framework, improving
learning efficiency while preserving policy optimality. We evalu-
ate our approach on confounded MuJoCo and Adroit benchmarks,
where it consistently outperforms unshaped and causally unaware
baselines such as CQL PBRS (achieving a normalized IQM score
of 1.10 vs. the unshaped baseline). This work marks an important
step toward confounding-robust reinforcement learning and causal
reward design for real-world continuous control.
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7 PROOF DETAILS

Here we present the proof details of theorems and propositions in the main text.

7.1 Proof for Thm. 4.1 Causal Bellman Optimal Equation for Stationary Infinite-Horizon CMDPs

Proor. Starting from the Bellman Optimal Equation, the optimal state value function is given by,

V*(s) = m;;:lXR(S, x) + yz T(s,x,5)V*(s") (18)

Note that the actions here are done by an interventional agent, which is actually do(x) in the context of a CMDP. We swap in the causal
bounds for interventional reward and transition distribution,

V*(s) < max [ﬁ(s, x)P(x|s) + bP(—x|s) + yz T(s,x,s")P(x|s)V*(s') + P(—x|s) max V*(s”)] (19)

where ﬁ(s, x) =E[Y|S =5, X =x], 75 is shorthand for 7~'(s, x,8") =P(S" =5'|S =5,X =x) and P(x|s) = P(X = x|S = s) are estimated from
the offline dataset. And b is a known upper bound on the reward signal, Y < b. In this step, we upper bound the next state transition by
assuming the best case that for the action not taken with probability P(—x|s), the agent transits with probability 1 the best possible next
state, maxs» V*(s”). After rearranging terms, we have,

V*(s) < max >P(x|s) R(s,x) +y Z T(s,x,s")V* (s/)) + P(=x]s) (b +y max V*(s”))} (20)

And optimizing the value function w.r.t ;his inequality gives Sus an upper bound on the optimal state value,
Vis) < max >P(x|s) (ﬁ(s, x) + yZ T(s,x,5)V(s')| + P(=x|s) (b + yn;ng(s"))} . (21)
| s i

7.2 Proof for Thm. 4.2 Convergence of Causal Bellman Optimal Equation

Proor. We will first show that the following Causal Bellman Optimality operator (will denote as “the operator" or B below for simplicity)
is a contraction mapping with respect to a max norm. Then by Banach’s fixed-point theorem [1], this operator has a unique fixed point, and
updating any initial point iteratively will converge to it. Then we show that this unique fixed point is indeed a lower bound of the optimal
interventional Q-value.

Let the operator B be,

BV (s,x) = max [P(x | s) (ﬁ (s,x)+y Z T (s, x, s')V(s')) +P(=x|s) (b + ymz}xV(s'))]. (22)

V1_-VZ|| > 0. We can bound their difference after

For arbitrary value bounds, ﬁ W let their initial difference under max-norm be ¢ = ‘

one step update by,

HB% - BWH < ymax
8] $,X

P(xls) Y T(s.x.8") (W(s') - W(s')) + P(=x]s) max (W(s') - W(s'))} . (23)



Thus, under the operator T, we have non-expansion Q-value differences,

HB% - BWH < ymax |P(x|s) Z T(s,x,5") (ﬁ(sl) - W(S')) + P(—x|s) max (%(3/) - W(s'))} (24)
< yemax (P(x|s) Z T(s,x,s") + P(~x|s) |, (25)
e ' (26)

for all V1, V2 satisfying ”Bﬁ - BW” <c¢,c¢> 0. Thus, T is a contraction mapping with respect to the max norm. And there exists a unique

fixed point V* when we apply this operator B iteratively to an arbitrary state value vector till convergence.

We then show that this fixed point is indeed an upper bound to the optimal interventional state values. By the backup rule of B (Eq. (21)),
YV (s), V(s) < BV (s). Thus, for the optimal state value, we can have V*(s) < limy_ ., B€V*(s) = V*(s) where B* denotes applying causal
bellman backup B iteratively for k times. This concludes the proof. O

7.3 Proof for Prop. 4.3

Proor. Because CMDP also enjoys the Markov property, the overall proof procedure highly resembles the original one in Ng et al. [30].
Only to note that the optimal policy invariance is proved in the online learning sense, which is between CMDP M, after reward shaping
under policy 7 and the original CMDP M, under policy 7. O

8 ENVIRONMENTS AND OFFLINE DATASET

Fig. 6 provides visualization of the six environments tested.

For offline datasets, the MuJoCo tasks use offline data generated by three different policies of varying expertise (simple-v0, medium-v0,
expert-v0). The Adroit tasks use mixed offline data generated by human demonstrators (human-v2), an "expert" fine-tuned RL policy
(expert-v2), and an imitation policy of the Human and Expert policies (cloned-v2).

(a) Hopper (b) HalfCheetah (c) Walker2d

(d) Ant (e) Adroit Door (f) Adroit Relocate

Figure 6: Visualizations of the Six Environments Tested.



Table 2: Offline Dataset Size

Environment Trajectory Size
Hopper-v5 2,997,774
HalfCheetah-v5 3,000,000
Walker2d-v5 2,998,745
Ant-v5 3,998,498
AdroitHandDoor-v1 2,009,942

AdroitHandRelocate-v1 | 2,006,729

Data pulled from the Minari data repository [50]. The Hopper, HalfCheetah, and Walker2d offline datasets roughly have the same split
of Simple, Medium, and Expert policies. The Ant dataset is 1/2 Expert data, with the remaining data evenly split between the Simple and
Medium policies. The Door and Relocate datasets have 1m observations from the Expert and Cloned policies, with the remaining coming
from Human demonstrators.

9 HYPER PARAMETERS
9.1 Offline Hyper Parameters

For CQL, we used the baseline implementation and training hyperparameters in [8], trained the Q-value function for 1M timesteps, and used
a batch size of 1028. For the Causal Upper Bounded State Value functions, we trained an environment model for 50 epochs to estimate the
parameters for 8, and 65 and then trained Algo. 1 for 200 epochs, with a batch size of 1028. This is roughly equivalent to 600k timesteps in
environments with 3M trajectories. To facilitate convergence, we mean-normalized the offline rewards.

Table 3: Hyperparameters for Offline Training Causal Upper Bounded State Value Functions

Hyperparameter Value
Environment Model Training Epochs 50
Causal Upper Bound Model Training Epochs | 200
Optimizer Adam
Batch Size 1028
Policy 6, Learning Rate le-4
State Transition 65 Learning Rate le-5
Q Learning Rate le-4
Discount Factor 0.99
Target Network Update 7 0.005
Target Update Interval 1
Policy Training Frequency 3
Num Hidden Dim 128
Num Residual Blocks 3

9.2 Online Hyper Parameters

To tune the hyperparameter § as detailed in Sec. 5.1, we tested the following values: 1, 0.1, 0.01, and 0.001, to find the f that resulted in
the best performance at the overall environment level. Sec. 9.2 includes the f value used for each environment and method. Given that
the agent’s performance is sensitive to f, the performance of an agent using Causal or CQL PBRS methods might be improved by further
hyper-tuning or optimizing f (instead of picking one f for the whole environment).

10 RELATION BETWEEN CONDITIONAL INDEPENDENCE AND PERFORMANCE

We looked at the relation between the RCIT test statistic (measure of dependence of selected state dimension and returns-to-go, conditioned
on remaining states and actions) and performance of the State Removed Baseline and Causal PBRS method. Note, a higher RCIT test statistic
implies a higher dependence between the two selected variables, conditioned on the remaining variables. We use results from the Hopper-v5
with the following re dimensions in the Hopper Environment - 1, 2, 3,5, 6, 7,1 - 4,5 - 6, 7 - 10. State Removed Gap is defined as the average
eval return gap between the State Removed SAC Baseline and a full state SAC Hopper agent. The Causal Gap is defined as the average eval
return gap between the State Removed SAC Baseline and the Causal PBRS method. As seen in Fig. 7a, there is a negative correlation between
an increase in conditional dependence, and Hopper performance degradation. Similarly, as seen in Fig. 7b, there is a positive relationship



Table 4: Hyperparameters for Online Training SAC

Hyperparameter ‘ Value
Training Steps 1e6 (MuJoCo), 3e6 (Adroit)
Optimizer Adam
Batch Size 512

Policy Learning Rate 3e-4

Q Learning Rate le-3

Alpha 0.2
Discount Factor 0.99

PBRS Discount Factor 1

PBRS S See Sec. 9.2
Target Network Update | 0.005
Target Update Interval 1

Policy Training Frequency | 2

Gradient Steps 1

Num Hidden Dim 256

Num Residual Blocks 2

Table 5: SAC PBRS Scaling Factors

Environment Causal Beta ‘ CQL Beta
Hopper-v5 0.1 0.1
HalfCheetah-v5 0.001 0.001
Walker2d-v5 0.1 0.01
Ant-v5 0.001 0.001
AdroitHandDoor-v1 0.1 0.1
AdroitHandRelocate-v1 0.1 0.1

between an increase in the RCIT test statistic and gap between the Causal PBRS and State Removed Baseline - but only up until a point. For
certain dimensions that have a very high dependence, the causal upper bounded state value function might not be as informative, and hence
a less improvement when compared the to State Removed Baseline.

State Removed Performance Gap
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(a) Relation Between RCIT test statistic and State Removed Baseline
Degradation in Hopper-v5.

(b) Relation Between RCIT test statistic and Causal PBRS Improve-
ment vs State Removed Baseline.

Figure 7: Relations between RCIT test statistic, baseline degradation, and causal PBRS improvement in Hopper-v5.



11 FUTURE DIRECTIONS AND CHALLENGES

This work takes a step towards improving reinforcement learning in confounded, continuous control environments and causal reward
design for real-world continuous control. In this section, we discuss current limitations, challenges, and consequently future directions. First,
estimating the value of the "road-not-taken" to adjust for potential confounders in Thm. 4.1 is not trivial. In particular, deciding which actions
—X to take is challenging given that in some offline datasets, there may not be enough action policy variance to 1) determine reasonable =X
actions and 2) understand the state transition probability given state s and action —X. One potential solution and area of future work is
to include datasets generated by agents with less sophisticated policies ([18] demonstrates, including datasets with trajectories from less
sophisticated agents can create better causal reward shaping functions) in the offline dataset training. Adding and testing the Causal PBRS
method’s efficacy with a wider range of policy levels could also further the understanding of how much expert data is needed to create
effective potentials. Finally, the other main challenge of this work was selecting the appropriate scaling factor, §, during the online training
phase. Implementing methods to automatically tune or optimize § could lead to a large performance improvement in the Causal PBRS
method.

12 ADDITIONAL EXPERIMENT RESULTS

For Door and Relocate experiments, we only run 1 seed with 3M training steps due to limited time and training resources.
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Figure 8: Confounded Hopper-v5 Experiment Results
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Figure 9: Confounded HalfCheetah-v5 and Walker2d-v5 Experiment Results
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Figure 10: Confounded Ant-v5, AdroitHandDoor-v1, AdroitHandRelocate-v1 Experiment Results (Returns)
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